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"The kitchen with wooden floors 
and white countertops. A large 

island stands in the center"

"The room contains a brown couch 
and a coffee table. The kitchen area 

has wooden cabinets"

"A store shelf displaying 
various skincare products"

"A desert landscape with uneven ground 
and a dusty appearance. A building is 

visible in the background"

"A vintage clock hanging 
on a brick wall"

"A pink onion is cut in half and 
placed on a wooden surface"

"A signboard located on a 
metal post near the water"

"A street scene with parked cars on 
the side of the road, trees line the 

street"

"A large, white luxury yacht floats 
serenely above the calm waters of 

an ocean"

"A bridge spans across the image, 
connecting two sides separated by 

water"

"A landscape dominated by trees 
and bushes, with a body of water 

visible in the background"

Figure 1. We present Prometheus, a novel method for feed-forward scene-level 3D generation. At its core, our approach harnesses
the power of 2D priors to fuel generalizable and efficient 3D synthesis – hence our name, Prometheus.

Abstract

In this work, we introduce Prometheus, a 3D-aware
latent diffusion model for text-to-3D generation at both ob-

∗ denotes equal contribution.
† corresponding author.

ject and scene levels in seconds. We formulate 3D scene
generation as multi-view, feed-forward, pixel-aligned 3D
Gaussian generation within the latent diffusion paradigm.
To ensure generalizability, we build our model upon pre-
trained text-to-image generation model with only minimal
adjustments, and further train it using a large number of
images from both single-view and multi-view datasets. Fur-
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thermore, we introduce an RGB-D latent space into 3D
Gaussian generation to disentangle appearance and geom-
etry information, enabling efficient feed-forward generation
of 3D Gaussians with better fidelity and geometry. Exten-
sive experimental results demonstrate the effectiveness of
our method in both feed-forward 3D Gaussian reconstruc-
tion and text-to-3D generation. Project page: Prometheus.

1. Introduction
3D assets play a crucial role in a wide range of applications,
including AR/VR, gaming, and simulation. Developing 3D
generative models capable of efficiently producing versatile
3D content has become a key objective, drawing substantial
interest in the field. Despite rapid progress in 2D image
and video generation, 3D generative models continue to fall
short of the progress seen in 2D generation.

One line of existing 3D generative models learn from
3D/multi-view data [8, 89], or single-view images of a sin-
gle category [5, 59]. This allows them for directly learn-
ing 3D representations in a feed-forward manner. Despite
achieving excellent multi-view consistency with good ge-
ometry, their generalizability is limited due to the scarcity
of the training data. Another line of approaches seeks to
use models trained on large amounts of 2D data for 3D
generation –– while the largest multi-view datasets con-
tain around 100K samples, single-view datasets and pre-
trained models based on them can reach scales of 100M
to 2B samples. Most methods in this area obtain 3D rep-
resentations through optimization. Some approaches use
score distillation [40, 54, 70, 80, 93] or incremental inpaint-
ing [14, 64, 75, 97]. However, since 2D models lack a com-
plete understanding of 3D, their outputs sometimes face the
Janus problem and tend to produce results with low fidelity.
Another set of methods fine-tunes 2D models to generate
multi-view images, requiring multi-view reconstruction to
form the 3D representation [18, 47, 58, 63, 84]. In both
cases, the optimization process can be time-consuming,
thereby lacking efficiency.

To address the aforementioned issues, we introduce
Prometheus, a 3D-aware latent diffusion model tailored
for text-to-3D generation at both object and scene levels.
Our key idea is to exploiting vast amount of 2D data as well
as 2D generative models to facilitate feed-forward 3D gen-
eration while maintaining generalization ability – taming
the fire of 2D priors to streamline 3D generation. Specif-
ically, we formulate 3D scene generation as multi-view,
feed-forward, pixel-aligned 3D Gaussian generation within
latent diffusion paradigm. To ensure generalizability, we
not only build our model upon pre-trained text-to-image
generation model (Stable Diffusion) with only minimal ad-
justments but also train it using both single-view images and
multi-view images. Furthermore, we introduce an RGB-D

latent space into 3D Gaussian generation to disentangle ap-
pearance and geometry information, enabling efficient feed-
forward generation of 3D Gaussians with better fidelity and
geometry.

Following the standard latent diffusion paradigm [57],
we separate training into two distinct stages. In the first
stage, we train a 3D Gaussian Variational Autoencoder (GS-
VAE) that takes multi-view or single-view RGB-D images
as input and predicts per-pixel aligned 3D Gaussians. Here,
the input depth map during training is estimated using an
off-the-shelf monocular depth estimator. Additionally, the
encoder of our GS-VAE directly re-uses the Stable Diffu-
sion encoder, predicting latent codes for both RGB images
and depth maps. We subsequently train a multi-view GS de-
coder to generate multi-view 3D Gaussians from the RGB-
D latent codes conditioned on camera poses. In the sec-
ond stage, we train a multi-view LDM that jointly predicts
multi-view RGB-D latent codes, conditioned on both cam-
era pose and text prompt. Furthermore, our full model is
trained on a combination of 9 multi-view and single-view
datasets, aiming for generalizability comparable to Stable
Diffusion. We demonstrate the effectiveness of our method
in both feed-forward 3D Gaussian reconstruction and text-
to-3D generation, showcasing that our model can generate
3D scenes in seconds while generalizing well to a variety of
3D objects and scenes.

2. Related work

3D Generative Models: 3D generative models have at-
tracted great attention in recent years. Many approaches
learn from single-category images or 3D supervisions [5,
10, 51, 59, 73, 100], utilizing either GANs or diffusion
models. However, these studies primarily concentrate on
domain-specific, object-centric scenes, such as those in-
volving Carla Cars [16] and human faces [29]. Despite
recent progress that has further extended these methods to
model scene-level generation [1, 53, 88, 91], these methods
are yet confined to a specific domain with limited general-
ization capability. This is mainly due to the scarcity of 3D
supervision. We aim to tackle this problem by combining
multi-view supervision with a vast amount of 2D images.

3D Generation with 2D priors: Thanks to the rapid
progress in 2D generation models like Stable Diffusion [57]
and SoRA [3], there is a large many works have explored
the potential of large 2D diffusion models for 3D-aware
generation. One line of works fine-tune 2D diffusion mod-
els to enable pose controllability for objects [46, 47] or
scenes [18, 20, 58, 81], where the output still lies in the
2D image space. Additionally, some works [13, 34, 34,
44, 52, 68, 95, 98, 105] aim to incorporate underlying 3D
prior knowledge to assist in synthesis. Since the aforemen-
tioned methods generate only 2D images, a separate 3D re-
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construction step is still needed, which can add time and
introduce errors. In contrast, we explore directly generating
3D representations in a feed-forward manner.

Another line of methods utilize the 2D priors for 3D gen-
eration through optimization, e.g., using Score Distillation
Sampling (SDS) [54, 54, 70, 74, 80, 93]. In parallel, several
works [14, 17, 36, 64, 75, 96, 103] formulate scene syn-
thesis as “perpetual view generation” [43], synthesizing the
effects of navigating a 3D world by stitching and rendering
images based on camera motions. These methods do not
require retraining 2D generative models, but they are inef-
ficient due to per-scene optimization. The generated con-
tent’s quality is limited by the 2D backbone, causing issues
like multi-view inconsistency and artifacts in geometry and
texture during image inpainting and score distillation.

Feed-Forward 3D Gaussian Generation: Unlike view
synthesis-based methods that focus on synthesizing multi-
view images followed by 3D reconstruction, a more intu-
itive approach is to directly generate 3D representations.
Following this idea, many works [6, 26, 76, 89] concen-
trate on the direct synthesis of 3D representations, such as
NeRF [48], which generates meshes from single or few-
view image inputs. Recently, numerous works [7, 8, 11,
12, 69, 71, 82, 86, 87, 87, 94, 102] have adopted 3D Gaus-
sian Splatting [32] as the underlying representation. Pixel-
Splat [7] is the first feed-forward model that learns to re-
construct 3D Gaussian splats from pairs of images. GS-
LRM [102] builds on this idea and utilizing a larger recon-
struction model (LRM [26]), achieving improved results.

To address this challenge, several works [21, 23, 35, 37,
38, 56, 60, 106] propose Large Diffusion Models as pow-
erful generators for 3D representations. WildFusion [60]
introduces a novel approach for achieving 3D-aware image
synthesis from in-the-wild datasets using latent diffusion
models. Director3D [38], which is closely related to our
work, presents a robust open-world text-to-3D generation
framework designed to create both real-world 3D scenes
and adaptive camera trajectories. Unlike Director3D, which
requires supervision in the image space, we follow common
practices in 2D image generation and adopt a latent diffu-
sion framework. This approach significantly reduces com-
putational overhead, making larger-scale training feasible,
and better leverages the 2D latent space, enhancing the gen-
eralizability of our method.

3. Method

In this section, we provide the technical details of our
method. As illustrated in Fig. 2, Prometheus follows the
common latent diffusion framework [57], which involves
two training stages. In the first stage (Sec. 3.1), our 3D
autoencoder, GS-VAE, learns a compressed and abstracted
latent space from multi-view images. Subsequently, it de-

codes this latent space into pixel-aligned 3DGS representa-
tions, serving as scene-level representations. In the second
stage (Sec. 3.2), a latent multi-view diffusion model (MV-
LDM) is trained on the latent representations derived from
the first stage’s autoencoder. This process results in a fully
generative model. Finally, we elaborate on our sampling
strategy (Sec. 3.3) for sampling 3D scenes in seconds while
maintaining consistency and visual fidelity.

3.1. Stage 1: GS-VAE

In Stage 1, our objective is to train a 3D autoencoder ca-
pable of compressing data into a latent space and subse-
quently reconstructing it into a 3D representation. Given
multi-view input images with camera poses, our GS-VAE
outputs multi-view pixel-aligned 3DGS. These outputs are
then merged into a scene-level 3D representation.
Encoding Multi-View RGB-D Images. We propose to
encode both, RGB images and their predicted monocular
depth maps, into the latent space, considering that monocu-
lar depth maps provide clues for the later 3D Gaussian de-
coding process and can be easily obtained. Given a set of
multi-view images I =

{
Ii ∈ RH×W×3|i = 1, 2, . . . , N

}
with each image Ii being an observation of an underly-
ing 3D scene, we first employ an off-the-shelf depth esti-
mator [90] to obtain their corresponding monocular depth
maps D =

{
Di ∈ RH×W×1|i = 1, 2, . . . , N

}
. Next, we

utilize a pre-trained image encoder Eϕ to encode both the
multi-view images I and their depth maps D into a latent
representation:

Eϕ : (I,D) 7→ Z ∈ RN×h×w×c, (1)

where h × w is the downsampled resolution. In practice,
we use a pre-trained Stable Diffusion (SD) image encoder
and freeze it during training. Recent methods, such as
Marigold [31], indicate that the SD encoder exhibits robust
generalization capabilities with depth maps. Consequently,
we opt to employ the same SD encoder to independently
encode both images and depths without the need for fine-
tuning. Subsequently, we concatenate these encoded repre-
sentations to obtain the full multi-view latent Z which can
be used for 3D reconstruction. Our diffusion model is addi-
tionally trained within this joint RGB-D latent space.
Fusing Multi-View Latent Images. Recent advance-
ments [26, 35, 77, 101, 102] underscore the significant po-
tential of transformer-based models in integrating multi-
view information. Since our latent codes for each view in
Z are derived individually, we employ a multi-view trans-
former to facilitate cross-view information exchange.

We further inject N camera poses into our multi-
view transformer. Inspired by recent works [18, 35,
38, 89], we choose Plücker coordinates as camera rep-
resentation [65], specifically r = (d,p × d) ∈ R6,
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Figure 2. Method Overview. Our training process is divided into two stages. In stage 1, our objective is to train a GS-VAE. Utilizing multi-
view images along with their corresponding pseudo depth maps and camera poses, our GS-VAE is designed to encode these multi-view
RGB-D images, integrate cross-view information, and ultimately decode them into pixel-aligned 3DGS. In stage 2, we focus on training a
MV-LDM. We can generate multi-view RGB-D latents by sampling from randomly-sampled noise with trained MV-LDM.

where d denotes the normalized ray direction and p de-
notes the camera origin. Thus, initial N camera poses
can be re-parameterized as multi-view ray maps R ={
Ri ∈ RH×W×6|i = 1, 2, . . . , N

}
. We combine the multi-

view latent codes Z and the camera ray maps R via con-
catenation along the feature channel and feed them into
the cross-view transformer to obtain the fused latent codes
Z̃ ∈ Rh×w×c that merges multi-view context:

Cϕ : (Z,R) 7→ Z̃ ∈ Rh×w×c. (2)

Decoding into Gaussian Scenes. Finally, we concatenate
the raw image latent codes Z , ray maps R, and the fused
latent codes Z̃ , and feed them into the decoder, thereby
obtaining the pixel-aligned multi-view 3D Gaussians F ={
Fi ∈ RH×W×CG |i = 1, 2, . . . , N

}
Dϕ : (Z, Z̃,R) 7→ F ∈ RN×H×W×CG , (3)

where Fi is the pixel-aligned 3D Gaussians correspond-
ing to each image. A 3D Gaussian is parameterized by
1-channel depth, 4-channel rotation quaternion, 3-channel
scale, 1-channel opacity, and 3-channel spherical harmonics
coefficients respectively. Thus CG = 12 in our formulation.
After aggregating multi-view 3D Gaussians, we can get the
final scene-level 3D Gaussians G as in Eq. (4)

M(F) 7→ G ∈ RNG×CG . (4)

Here, M(·) denotes the aggregation operation, which is
achieved by transforming all 3D Gaussians into a global co-
ordinate system. NG represents the number of full Gaussian
primitives, which is equivalent to N ×H ×W .

In practice, this architecture is also applicable to single-
view images, where N equals to 1. During training, we

sample from both single-view and multi-view images. Be-
sides, to maximize the usage of 2D generative priors, we
follow Director3D [38] and repurpose a pre-trained Stable
Diffusion image decoder with minor modifications as our
Gaussian decoder Dϕ. Specifically, we only adjust the num-
ber of channels in the first and last convolutional layers.
Loss Function. Given the reconstructed scene-level 3D
Gaussians Ĝ, we can render them from arbitrary view-
points. Let c denote a given viewpoint, we can render the
corresponding RGB image and depth map from Ĝ:

R(Ĝ, c) 7→ {Î , D̂}, (5)

where R(·) denotes the differentiable rendering of 3D Gaus-
sian Splatting. We can subsequently apply render loss,
which integrates MSE (Mean Squared Error) loss and per-
ceptual [28] loss:

Lrender = Lmse(Î , I) + Lvgg(Î , I). (6)

In addition to the rendering loss on the RGB domain, we
also impose a loss between our rendered expected depth D̂
and the monocular depth D̄ which serve as pseudo geometry
ground truth as below:

Ldepth = ∥(wD̂ + q)− D̄∥2, (7)

where Ldepth is the scale invariant depth loss follow-
ing [55]. Here, w and q are the scale and shift used to align
D̂ with D̄ since D̄ is defined only up to a scale and a shift.
We determine w and q using a least-squares criterion [55].

Our full loss function of the GS-VAE is as follows:

L(ϕ) = λ1Lmse + λ2Lvgg + λ3Ldepth, (8)

where ϕ denotes the optimizable parameters in GS-VAE,
and λ1, λ2, λ3 are employed to balance the weight of each
loss term.
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3.2. Stage 2: Geometry-Aware Multi-View Denoiser
After the training of stage 1, we obtain a GS-VAE capable
of i) efficiently compressing images into a compact latent
space and ii) bridging the gap between 2D and 3D via a 3D
Gaussian decoder. This capability enables us to train the
multi-view diffusion model (MV-LDM) in the latent space.

We aim to jointly generate multi-view RGB-D latent
codes Z ∈ RN×h×w×c to provide richer geometric cues
for decoding 3DGS. Therefore, we formulate a continuous-
time denoising diffusion [30, 66] conditioned on the text
prompt y and camera poses R. The diffusion model con-
sists of a stochastic forward pass to inject one noise level
noise Gaussian noise into input latent codes and a reverse
process to remove noise with a learnable denoiser Gθ.
Training. For each training step, we sample one noise level
σt, where log σt ∼ N (Pmean, P

2
std) [30]. Next, we add

noise of this level to the clean multi-view latents Z0 to ob-
tain the noisy latents Zt as

Zt = Z0 + σ2
t ϵ, ϵ ∼ N (0, I). (9)

In the reverse process, diffusion model denoises Zt towards
predicted clean Ẑ0 with a learnable multi-view denoiser Gθ

as
Ẑ0 = Gθ(Zt;σt,y,R), (10)

where y and R are the text and camera poses condition re-
spectfully. Our MV-LDM is trained in latent space via de-
noising score matching (DSM) [72]

L(θ) = EZ,R,y,σt

[
λ(σt)∥Ẑ0 −Z0∥22

]
, (11)

with weighting function λ(σ) = (1+σ2)σ−2. In this work,
we follow EDM [30] and parameterize the denoiser Gθ as

Gθ(Zt;σt,y,R) = cskip(σt)Zt+

cout(σt)Fθ(cin(σt)Zt; cnoise(σt),y,R),
(12)

where Fθ is a UNet to be trained in our case, and cskip, cout,
cin, and cnoise are preconditioning functions. Furthermore,
consistent with Stage 1 Eq. (3), we employ ray maps as the
pose representation and incorporate them into the network
by concatenating them with the noisy latents Zt along fea-
ture channel. Additionally, the text prompt conditioning is
introduced via cross-attention mechanisms.

Inspired by recent multi-view diffusions [18, 38, 63], we
replace the self-attention blocks in the original UNet with
3D cross-view self-attention blocks to capture multi-view
correlations. In practice, to leverage the pre-trained text-to-
image prior, we initialize the model Gθ from a pre-trained
text-to-image diffusion model’s, specifically the UNet from
Stable Diffusion [57].
Sampling. At sampling time, multi-view latents Z0 is re-
stored from a randomly-sampled Gaussian noise ZT con-
ditioning on text prompt and camera poses by iteratively

Dataset Scene type # of frames # of Scenes

SAM-1B [33] Single view 11M -
MVImgNet [99] Object 6.8M 230K
DL3DV-10K [42] Indoor / Outdoor 2.2M 6K
Objaverse [15] Object 11.5M 784K
ACID [43] Indoor 510K 11K
RealEstate10K [107] Indoor 2.8M 57K
KITTI [19] Driving 42K 0.8K
KITTI-360 [39] Driving 69K 1.2K
nuScenes [4] Driving 340K 0.85K
Waymo [67] Driving 200K 1K

Table 1. Training datasets We collect a large, multi-domain
dataset for training, including single-view and multi-view data, all
paired with detailed captions.

applying the denoising process with trained MV-LDM Gθ

ZT ∼ N (0, σ2
T I) (13)

Zt−1 =
Zt − Gθ(ZT ;σt,y,R)

σt
(σt−1 − σt)

+Zt, 0 < t ≤ T

(14)

where σ0, ..., σT are sampled from a fixed variance schedule
of a denoising process with T steps.
The Importance of Noise Level. Inspired by insights from
recent works [2, 13, 62], we recognize that a lower Signal-
to-Noise Ratio (SNR) during the denoising step is crucial
for determining the global low-frequency structure of the
content. Furthermore, this lower SNR during sampling is
essential for achieving multi-view consistency in the multi-
view diffusion model Gθ. Therefore, we adopt a relatively
large noise distribution with Pmean = 1.5 and Pstd = 2.0
during multi-view training of MV-LDM Gθ and Pmean =
-0.5 and Pstd = 1.2 during single-view training.

3.3. Text to 3D Scene Generation in Sceonds
Based on the model above, we can achieve feed-forward
text to 3D scene generation by sampling multi-view RGB-
D latents Z from randomly-sampled Gaussian noise ZT in
latent space using MV-LDM Gθ, and subsequently decode
into a 3D Gaussian Scene G using GS-VAE decoder:

Gθ : (ZT ;y,R) 7→ Z,

Cϕ : (Z,R) 7→ Z̃,

Dϕ : (Z, Z̃,R) 7→ G.

(15)

To sample that with high quality and align with the con-
dition, we use classfier-free-guidance (CFG) [25] to guide
multi-view generation toward condition signal y.

Gw
θ (Zt;y,R) = w · Gθ(Zt;y,R)

+ (w − 1) · Gθ(Zt;R),
(16)

where w ≥ 0 represents the guidance strength. How-
ever, if we simply apply the naive CFG Eq. (16), as com-
monly practiced in most text-to-image methods, increasing

5



Method Tartanair (Easy) Tartanair (Medium) Tartanair (Hard)
PSNR↑ SSIM↑ LPIPS↓ AbsRel↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓ AbsRel↓ δ1↑ PSNR↑ SSIM↑ LPIPS↓ AbsRel↓ δ1↑

pixelSplat[7] 21.65 0.681 0.293 0.650 0.373 20.30 0.628 0.337 0.806 0.323 19.35 0.589 0.371 0.871 0.307
MVSplat [11] 19.38 0.569 0.370 0.809 0.283 18.50 0.531 0.409 0.872 0.265 17.87 0.500 0.445 0.907 0.272
Ours 20.95 0.589 0.289 0.435 0.536 20.15 0.560 0.314 0.493 0.514 19.49 0.532 0.341 0.526 0.505

Table 2. Quantitative comparison for Stage 1. We compare our GS-VAE with baselines for generalizable reconstruction on Tartanair.

Input Images pixelSplatGround Truth MVSplat Ours

E
asy

M
edium

H
ard

Figure 3. Qualitative comparison for Stage 1. We compare Prometheus against baselines under varying difficulty settings. As overlap
gradually decreases, the advantages of our method continue to grow. Moreover, as shown in the depth map, our method exhibits superior
geometry quality across all settings.

w would lead to multi-view inconsistency in the generated
results. This naive design described above causes the model
to overfit to the text condition while compromising multi-
view consistency, in line with with the findings in [83, 85].
To balance multi-view consistency and fidelity during sam-
pling, we follow HarmonyView [83] and adapt hybrid sam-
pling guidance, which rewrites Eq. (16) as below:

Gw
θ (Zt;y,R) = Gθ(Zt;y,R)

+w1 · (Gθ(Zt;y,R)− Gθ(Zt;R))

+w2 · (Gθ(Zt;y,R)− Gθ(Zt;y)), (17)

where w1 and w2 denote the weight of text and pose guid-
ance respectively with w = w1 + w2, thereby better main-
taining fidelity and consistency across generated views. In
addition, we also use CFG-rescale as proposed in [41] to
avoid over-saturation issues during conditional sampling.

4. Experiment

4.1. Training Datasets

We train our method on large-scale single-view and multi-
view datasets, see Tab. 1. Regarding the single view dataset,
we use a high-quality SAM-1B [33] dataset with detailed
captions [45] which was present in PixArt-α [9]. Our model
is trained on a combination of 9 multi-view datasets, includ-
ing object-centric, indoor, outdoor, and driving scenarios,
text prompts for each scene are generated using the multi-
modal large language model [45].

4.2. Implement Details

During GS-VAE training (Stage 1), we set both the num-
ber of input and novel views to N = 4 for each multi-view
scene. To improve model generalizability, we also sample 2
single-view images alongside the multi-view ones, applying
the loss to the input views only for single-view images. The
GS-VAE was trained on 8 A800 GPUs with a batch size of
32. The final model is trained for 200,000 iterations with
approximately 4 days. We use gsplat [92] as our 3D Gaus-
sian renderer. We initialize the weights of our cross-view
transformer from a pretrained RayDiff [101].

For the MV-LDM (Stage 2), we employ Stable Diffusion
2.1 [57] as our base model. During training, we set N = 8
for each multi-view scene. Similarly to Stage 1, we sample
M = 4 single-view images alongside multi-view ones. For
each iteration, we sample a batch size of 8 on each GPU.
The final MV-LDM model was trained on 32 A800 GPUs,
resulting in a total batch size of 3072 images. The model
underwent 350,000 iterations, which took about 7 days. We
utilize a DepthAnything-V2-S [90] model to estimate depth
map on the fly. To achieve classifier-free guidance during
sampling, we randomly drop text condition t and pose con-
dition p with the probability 10% during training.

4.3. Evaluation Protocols

3D Reconstruction (Stage-1). To demonstrate the 3D re-
construction generalization of our GS-VAE, we employed
Tartanair [78] for our evaluation, which is a diverse syn-
thetic dataset with 18 scenes not included in our training set,
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Method Single-Object Single-Object-with-Surroundings Scene-Level TimeBRISQUE↓ NIQE↓ CLIP-Score↑ BRISQUE↓ NIQE↓ CLIP-Score↑ BRISQUE↓ NIQE↓ CLIP-Score↑
GaussianDreamer [93] 107.8 18.79 0.386 110.8 18.16 0.389 - ≈ 15min
MVDream [63]+LGM [71] 74.64 14.96 0.379 77.50 14.03 0.343 - ≈ 10s
Director3D [38] 49.91 13.56 0.397 49.77 13.64 0.405 50.88 14.97 0.357 ≈ 22s
Ours 59.43 14.23 0.329 58.88 14.00 0.369 49.63 14.01 0.370 ≈ 8s

Table 3. Quantitative comparison for 3D generation. We compare Prometheus with baselines for text-to-3D generation utilizing text
prompts from T3Bench.

Single-O
bject

Text Prompt GaussianDreamer MVDream+LGM Director3D Ours

A blooming potted 
orchid with 

purple flowers

Single-object-w
ith-Surr

A castle-shaped 
sandcastle

A black and white 
photograph framed 
in dark mahogany

A red apple
 resting on 

a white ceramic plate

Figure 4. Qualitative comparison for Stage2: Object-level 3D generation. Prometheus generates objects that align with the given
description, incorporating rich background information and intricate details.

covering both indoor and outdoor scenarios. Based on the
degree of overlap and distance among input views, we cat-
egorize them into three distinct modes: Easy, Medium, and
Hard, each comprising 4 context views and 3 target views.

We use the metrics PSNR, SSIM [79] and LPIPS [104]
for evaluating the reconstructed images. To better compare
the reconstructed geometry, we evaluate the rendered depth
maps. Follow [27, 61], we align rendered depth maps with
the ground truth with per-scene scale and shift and calculate
two widely recognized metrics [55] for evaluation, Abso-
lute Mean Relative Error (AbsRel) and δ1 accuracy with a
specified threshold value of 1.25.
3D Generation (Stage-2). To assess the text-to-3D gener-
ation capabilities of our model, we employ two text prompt
sets from T3Bench [22] –– Single-Object and Single-
Object-with-Surroundings. These sets collectively evaluate
the model’s proficiency in object-level, and scene-level gen-
eration tasks. Additionally, we collected 80 diverse scene-
level text prompts covering indoor and outdoor scenarios.

The quantitative results are evaluated using the CLIP-
Score [24], NIQE [50], and BRISQUE [49] metrics. CLIP-
Score assesses the alignment between the generated images
and the textual prompts, whereas NIQE and BRISQUE in-
dicate the image quality.

4.4. Comparison with Baselines

3D Reconstruction. We compare the GS-VAE of
Prometheus against two sparse-view reconstruction
models –– namely, pixelSplat [7] and MVSplat [11]. Our
quantitative findings are shown in Tab. 2, where we accen-

tuate the best , second-best , and third-best scores across
all metrics. Beginning with geometry, Prometheus sur-
passes the other two baselines, and this advantage becomes
more pronounced as the degree of overlap among input
views diminishes –– see the δ1, which exhibits a relative en-
hancement of 44% on Easy mode and a substantial 64% on
Hard mode against pixelSplat. Regarding the reconstructed
images, Prometheus delivers comparable outcomes on
Easy mode and notably outperforms its counterparts as the
mode intensifies, particularly in Hard mode. We also pro-
vide qualitative results in Fig. 3. These findings on geom-
etry and image reconstruction suggest that Prometheus
is more robust to variations in input view overlap than its
baselines, a key factor for the success of our downstream
3D generation task.

3D Generation. We compare Prometheus with three
text-to-3D baseline methods, covering both optimization-
based method and feed-forward method. Gaussian-
Dreamer [93] is a state-of-the-art SDS-based method for
3DGS. We additionally implement a baseline that applies
a multi-view to 3D method, LGM [71] to images gener-
ated by MVDream [63]. We also compare to a feed-forward
method, Director3D [38] (without refiner). Fig. 4 and Fig. 5
show that our method is capable of generating both, ob-
ject and scene-level contents, containing background and
rich details, outperforms both optimization-based and feed-
forward baselines. Tab. 3 shows our overall metrics are sub-
optimal compared with Director3D for object level while
leading in other cases. This is attributed to failure cases
in the object-centric setting, see supplementary material for

7



Text Prompt

A bedroom scene displays a bed 
covered by a quilt and a window
 located near the end of the bed

A coastal town with white 
buildings and green 

vegetation is seen in the image

Director3D Ours
Figure 5. Qualitative comparison for Stage 2: Scene-level 3D generation with diverse scene-level prompt. Our result better aligns with
the text prompt and captures more details.

Variants Tartanair (4 views)
PSNR↑ SSIM↑ LPIPS↓ AbsRel↓ δ1↑

Ours(w/o RGB-D) 18.38 0.475 0.383 0.761 0.324
Ours(w/o single-view) 18.63 0.480 0.424 0.542 0.475
Ours 19.49 0.532 0.341 0.526 0.505

Table 4. Quantitative ablation results of GS-VAE for generaliz-
able reconstruction.

Ground Truth Oursw/o single-framew/o RGB-D

Figure 6. Qualitative ablation results of GS-VAE for generaliz-
able reconstruction.

more details. Note that our method takes only 8 seconds for
generation, outperforming all baselines.

4.5. Ablations of GS-VAE (Stage 1)

In Tab. 4, we run ablation studies on the Hard mode of Tar-
tanair, analyzing the following factors of GS-VAE.

The effectiveness of Depth Prior for GS-VAE. We inves-
tigate the impact of RGB-D latent space during our stage 1
training. Our result in Tab. 4 highlights that training with-
out RGB-D latent space –– only RGB latent space –– yields
worse results over our full model on geometry. Addition-
ally, this bad geometry will lead to sub-optimal quality on
reconstructed images, see qualitative results in Fig. 6.

If large scale matters in Generalizable Reconstruction.
Next, we ablate the effectiveness of large-scale dataset,
denoted as w/o single-view in Tab. 4. The exclusion of
the single-view dataset results in diminished performance
across both reconstructed images and geometry. This under-
scores the significant role of large-scale datasets in achiev-
ing robust Generalizable Reconstruction. We also visualize
the qualitative results in Fig. 6.

Variants BRISQUE↓ NIQE↓ CLIP-Score↑
Training
strategy

w/o single-view data 59.45 14.57 0.342
w/o high noise level 63.06 13.88 0.343

Inference
strategy

w/o hybrid sampling 66.19 13.92 0.329
w/o CFG-rescale 89.70 15.15 0.303

Ours (full) 58.88 14.00 0.369

Table 5. Quantitative ablation results of MV-LDM on text-to-
3D generation.

4.6. Ablations of MV-LDM (Stage 2)

In Tab. 5, we conduct ablation studies on the Single-
Object-with-Surroundings subset of T3Bench, examining
both training and inference strategies of MV-LDM.
Single-View Dataset. We assess the impact of single-
view data. Excluding this training strategy by solely train-
ing with multi-view data (w/o single-view data) results in
performance degradation, We attribute this to the lack of
single-view data, which reduces the model’s generalizabil-
ity, aligning with the observations in MVDream [63].
High Noise Level. As mentioned in Zero123++ [46] and
Sec. 3.2, it is crucial for the model to learn high-level
structures in the low-frequency space. Therefore, we also
evaluate the effectiveness of a high noise level by setting
Pmean = −0.5 and Pstd = 1.2 during multi-view training
(w/o high-noise level). The results in Tab. 3 show that both
visual quality and CLIP score decline in this setting.
Hybrid Sampling and CFG-Rescale. Finally, we evaluate
the design of our inference strategy Sec. 3.2 on hybrid CFG
sampling and CFG-rescale by applying CFG solely on the
text prompt(w/o hybrid sampling) and set the CFG-rescale
factor to 0 (w/o CFG-rescale). Tab. 5 shows that the absence
of hybrid sampling and CFG-rescale results in varying de-
grees of metric decline.

5. Conclusion

We present Prometheus, a 3D-aware latent diffusion
model tailored for text-to-3D generation at both object and
scene levels in seconds. We demonstrate the effectiveness
of our method in feed-forward reconstruction and 3D gener-
ation with extensive experiments. We believe our work of-
fers valuable contributions to text-to-3D scene generation,
improving generalizability, fidelity, and efficiency.
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Prometheus: 3D-Aware Latent Diffusion Models for Feed-Forward
Text-to-3D Scene Generation

Supplementary Material

Camera & Text Prompt RGB-D Rendering Results

A dining room with modern 
furnitur and decor is displayed. 

The table has chairs 
surrounding it.

A desert landscape with uneven 
ground and a dusty appearance. 

A building is visible in the 
background.

A vintage clock hanging on a 
brick wallies.

An aerial view of a deserted beach  
reveals people scattered across the 
sandy expanse, with huts nestled 

against a forest.

Figure 7. More Results. Our method can synthesize diverse results across multiple domains, taking text prompts and camera poses as
input. As shown in the image, we can render diverse (indoor/outdoor/object-centric) scenes that are faithfully aligned with the given text
prompt and camera trajectory, while maintaining good underlying geometry.

A. More Generation Results
We present additional generation results of multi-view im-
ages and depth maps across diverse text prompts and cam-
era trajectories in Fig. 7. These results underscore the ro-
bustness of our approach in managing both object-level
and scene-level prompts for 3D scene generation. Then
we present more scene-level generation comparison results
with Director3D, the concurrent scene-level feedforward

text-to-3D method, as shown in Fig. 8.

B. Limitations
We then visualize the failure cases of our method in Figs. 9
and 10. Firstly, as shown in Fig. 9, despite specific designs
during training and sampling aimed at mitigating 3D in-
consistencies, Prometheus still encounters inaccuracies
in rendering high-frequency structures. Secondly, as shown
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Text Prompt

A traditional Chinese building 
with pagoda-style roof adorned 

with red lanterns.

A cityscape viewed from above 
displays a church with a 

domed roof and cross, smaller 
buildings scattered,

The street scene displays a well-
maintained road lined with trees 
on both sides, extending into the 

distance.

Director3D Ours

The living room is spaciousand 
well-lit with large windows. The 

furniture consists of a red 
couch...

Figure 8. Qualitative comparison with Director3D. We compare Prometheus against baselines under varying difficulty settings. As
overlap gradually decreases, the advantages of our method continue to grow. Moreover, as shown in the depth map, our method exhibits
superior geometry quality across all settings.

Camera & Text Prompt RGB-D Rendering Results

A bright sunflower 
in a field.

A silver laptop  sitting 
on a wooden desk.

Figure 9. Multiview-inconsistency cases. We show Multiview-inconsistency, the main factor contributing to the failure cases of our
method. As shown in the images, due to the lack of explicit 3D representation during multiview generation in latent space, Prometheus
will encounter view inconsistency under large rotations or extreme viewpoints.

in Fig. 10, our method occasionally exhibits text misalign-
ment issues. The primary cause is the joint training of
single-view and multi-view models, which disrupts the orig-
inal text embedding layer of the pre-trained image genera-
tion model. Designing a specialized architecture to preserve
the text alignment capability of the pre-trained image gen-
eration model will address this issue.
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Camera & Text Prompt RGB-D Rendering Results

An intricately-carve wooden 
chess set .

A bustling cityscape viewed from 
above, featuring tall buildings 

and houses amidst scattered trees.

Figure 10. Text-misalignment cases. We then show Text-misalignment, the second factor contributing to the failure cases of our method.
As shown in the images, Prometheus synthesizes a black laptop instead of following the prompt, which should be silver.
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